Mathematical Induction
for proving inequalities

For convenience, we call the statement we're trying to prove P_n. (P_n is a statement whose variable is n.)

Step 1 Show that P_1 is true. (P_1 is P_n except n is replaced by 1.)

Step 2 Show that P_k implies P_{k+1}. (P_k is P_n except n is replaced by k, etc.)

Example Prove that $2^n \geq n + 1$ for all natural numbers n.

Step 1

You Write This

Discussion
don't write

$2^1 \geq 1 + 1$
$2 \geq 2 \checkmark$

We replaced n with 1 in the statement we're trying to prove. Since it results in a true statement, we can proceed to Step 2.

Step 2

You Write This

Discussion
don't write

Assume P_n is true for natural number k, i.e.,

$2^k \geq k + 1$

Start with P_k. This is your inductive hypothesis. You are allowed to assume it's true. (It's just the original statement with k in place of n.)

$2 \cdot 2^k \geq 2 \cdot (k + 1)$

Since our goal is to show that P_k implies P_{k+1}, where P_{k+1} is the statement $2^{k+1} \geq (k + 1) + 1$, we first want to get 2^{k+1} on the left hand side. We do this by multiplying both sides by 2.

$2^{k+1} \geq 2k + 2$

We simplified on both sides. Now, the left hand side is where we want it, it's time to work on the right hand side.

$2^{k+1} \geq (k + 1) + 1 + k$

The right hand side is good now except it has an extra k at the end. As it turns out, this is not that big of a problem since k is known to be greater than zero. (see above, k is a natural number)

$2^{k+1} \geq (k + 1) + 1 + k \geq (k + 1) + 1$

This is true since $k \geq 0$.

$2^{k+1} \geq (k + 1) + 1$

(Done) This is true by the transitive property for inequalities which says if $a \geq b$, and $b \geq c$, then $a \geq c$.

$2^{k+1} \geq (k + 1) + 1$