Work Problems

<u>Work Problems</u> are those problems where you have two people (or machines) doing a job at different rates. There are three physical quantities to note. They are <u>rate</u>, <u>time</u>, and <u>quantity</u>, where $Q = r \times t$.

For example, if George can assemble 3 chairs per hour and he works for 8 hours, we have:

Quantity =
$$3 \frac{\text{chairs}}{\text{hour}} \cdot 8 \text{ hours} = 24 \text{ chairs}$$

An essential KEY that you must be aware of is that the time it takes a person to do 1 task (or 1 job) is the reciprocal of their rate!

For example, if it takes George 4 hours to assemble a table, then his rate is $\frac{1}{4}$ tables per hour.

Or, if it takes a team x hours to do a job, their team rate is $\frac{1}{x}$ jobs per hour.

There is usually two ways to work these problems.

Method 1. Add individual rates to get a team rate.*

Method 2. Add each "person's" quantity (/part of job completed), to get 1 (job).

*Method 1 is usually easiest <u>but</u> it can't be used if one person quits early or arrives late.

Example 1 Barry can do a job in 3 hours, whereas it takes Sanchez 5 hours to do the same thing. How long would it take them working together?

Let x = time it would take them working together.

Method 1	time	rate	
Barry	3	1/3	
Sanchez	5	1/5	
Team	X	1/x	

Equation:
$$\frac{1}{3} + \frac{1}{5} = \frac{1}{x}$$

Method 2	individual time	rate ×	time = working	part of job completed
Barry	3	1/3	X	x/3
Sanchez	5	1/5	X	x/5

actual

(quantity)

Equation:
$$\frac{x}{3} + \frac{x}{5} = 1$$