Work Problems

Work Problems are those problems where you have two people (or machines) doing a job at different rates. There are three physical quantities to note. They are rate, time, and quantity, where $\mathrm{Q}=\mathrm{r} \times \mathrm{t}$.

For example, if George can assemble 3 chairs per hour and he works for 8 hours, we have:

$$
\text { Quantity }=3 \frac{\text { chairs }}{\text { hour }} \cdot 8 \text { hours }=24 \text { chairs }
$$

An essential KEY that you must be aware of is that the time it takes a person to do 1 task (or 1 job) is the reciprocal of their rate!

For example, if it takes George 4 hours to assemble a table, then his rate is $\frac{1}{4}$ tables per hour.

Or, if it takes a team x hours to do a job, their team rate is $\frac{1}{\mathrm{X}}$ jobs per hour.
There is usually two ways to work these problems.
Method 1. Add individual rates to get a team rate.*
Method 2. Add each "person's" quantity (/part of job completed), to get 1 (job).
*Method 1 is usually easiest but it can't be used if one person quits early or arrives late.
Example 1 Barry can do a job in 3 hours, whereas it takes Sanchez 5 hours to do the same thing. How long would it take them working together?

Let $\mathrm{x}=$ time it would take them working together.

Method 1	time	rate
Barry	3	$1 / 3$
Sanchez	5	$1 / 5$
Team	x	$1 / \mathrm{x}$

Equation: $\frac{1}{3}+\frac{1}{5}=\frac{1}{x}$

