The Gauss-Jordan Method for Solving Systems of Linear Equations

1 of many possible methods

$\underline{2}$ Equations, 2 Variables

$\operatorname{Start}\left[\begin{array}{lll}* & * & * \\ * & * & *\end{array}\right]$
Copy the coefficients and constant terms in you see them.

First $\left[\begin{array}{lll}1 & * & * \\ * & * & *\end{array}\right] \quad \begin{aligned} & \text { Get a "1" in the } \\ & \text { top left position. }\end{aligned}$

2nd $\left[\begin{array}{lll}1 & * & * \\ 0 & * & *\end{array}\right] \quad \begin{aligned} & \text { Get a " } 0 \text { " in the } \\ & \text { column of the "1". }\end{aligned}$

3rd $\left[\begin{array}{lll}1 & * & * \\ 0 & 1 & *\end{array}\right] \quad \begin{aligned} & \text { Get a "1" in the 2nd } \\ & \text { row, 2nd column. }\end{aligned}$

Last $\left[\begin{array}{lll}1 & 0 & a \\ 0 & 1 & b\end{array}\right] \quad \begin{aligned} & \text { Get a "0" in the } \\ & \text { column of that "1". }\end{aligned}$

Answer: $\{(a, b)\}$

Note: These systems can be solved using a number of different approaches. However, most students are better off sticking to a single method, maybe this one.

3 Equations, 3 Variables

$\operatorname{Start}\left[\begin{array}{llll}* & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]$

First $\left[\begin{array}{llll}1 & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right]$
2nd $\left[\begin{array}{llll}1 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & *\end{array}\right]$
3rd $\left[\begin{array}{llll}1 & * & * & * \\ 0 & 1 & * & * \\ 0 & * & * & *\end{array}\right]$
Get a "1" in the 2nd row, 2nd column.

Get zeros in the column of that " 1 ".

Get a "1" in the 3rd row, 3rd column.

Get zeros in the column of that " 1 ".

Answer: $\{(a, b, c)\}$

Summary: Get the 1 first, and then use that 1 to help get your zeros. See next page for an explanation on how to do that.

Are you familiar with the tools in your toolbox?

1. Any two rows of the matrix can be interchanged (/switched/swapped).
2. Any row of the matrix can be multiplied by any (nonzero) number.
3. Any row of the matrix can be replaced by the sum of a (nonzero) multiple of another row added to a (nonzero) multiple of the row you're replacing.
*Getting Zeros: Multiply the row with the "1" in it by the opposite of the number where you want the zero; then add to that the row you are replacing. That's it!

Example: For $\left[\begin{array}{ccc}1 & -3 & 8 \\ 2 & 5 & -6\end{array}\right]$, replace Row 2 with $(-\mathbf{2}) \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}$. You'll get $\left[\begin{array}{ccc}1 & -3 & 8 \\ 0 & 11 & -22\end{array}\right]$.

* Getting One's:

*In the first row
A. If there is a 1 in the first position of another row, just "swap" rows.
B. Consider the multiples of the first elements of each row and find 2 that are different by 1 . Then replace row 1 with that "sum".
Example: For $\left[\begin{array}{ccc}3 & -2 & 5 \\ 7 & 1 & -2\end{array}\right]$, replace Row 1 with $\mathbf{R}_{\mathbf{2}}+(-\mathbf{2}) \mathbf{R}_{\mathbf{1}}$. You'll get $\left[\begin{array}{ccc}1 & 5 & -12 \\ 7 & 1 & -2\end{array}\right]$. or for $\left[\begin{array}{ccc}5 & -3 & 7 \\ 7 & 2 & -1\end{array}\right]$, replace Row 1 with $(-2) \mathbf{R}_{\mathbf{2}}+\mathbf{3} \mathbf{R}_{\mathbf{1}}$. You'll get $\left[\begin{array}{ccc}1 & -13 & 23 \\ 7 & 2 & -1\end{array}\right]$.
C. (My last resort)... Multiply row 1 by the reciprocal of the first element. This will probably bring fractions into the matrix, then, have fun working with those fractions.
*In the bottom row
This is pretty easy. Just multiply that bottom row by the reciprocal of the number where you want the 1.

* In the middle row (of a 3 equation, 3unknown system)
A. If the 3rd row has a 1 in the 2nd column, just swap rows 2 and 3 .
B. Like step B (above), consider the multiples of the first elements of rows 2 and 3, and find a couple that are different by 1 . Then replace row 2 with that "sum".
Example: For $\left[\begin{array}{cccc}1 & -6 & 8 & 7 \\ 0 & 4 & -2 & 5 \\ 0 & 9 & 3 & -1\end{array}\right]$, replace row 2 with $\mathbf{R}_{3}+\mathbf{(- 2)} \mathbf{R}_{2}$, to get $\left[\begin{array}{cccc}1 & -6 & 8 & 7 \\ 0 & 1 & 7 & -11 \\ 0 & 9 & 3 & -1\end{array}\right]$.
C. Multiply row 2 by the reciprocal of the term where you want the 1. Again, this likely will bring fractions into the problem. I recommend using a standard elimination technique, get a zero in row 2 , column 3 , first.

Example: For $\left[\begin{array}{cccc}1 & 3 & -2 & 4 \\ 0 & 4 & 3 & 14 \\ 0 & 8 & 7 & 26\end{array}\right]$, replace row 2 with $3 \mathbf{R}_{3}+(-7) \mathbf{R}_{2}$, to get

$$
\left[\begin{array}{cccc}
1 & 3 & -2 & 4 \\
0 & -4 & 0 & -20 \\
0 & 8 & 7 & 26
\end{array}\right]
$$

Then, multiply row 2 by the reciprocal of that 2nd element! Good luck!

