The Gauss-Jordan Method for Solving Systems of Linear Equations

1 of many possible methods

2 Equations, 2 Variables

3 Equations, 3 Variables

Start [* * * *]	Copy the coefficients and constant terms in the same pattern that you see them.	Start	* * * * * * * * * * * *	Copy the coefficients and constant terms in the same pattern that you see them.
First $\begin{bmatrix} 1 & * & * \\ * & * & * \end{bmatrix}$	Get a "1" in the top left position.	First	\[\begin{array}{cccccccccccccccccccccccccccccccccccc	Get a "1" in the top left position.
$\mathbf{2nd} \begin{bmatrix} 1 & * & * \\ 0 & * & * \end{bmatrix}$	Get a "0" in the column of the "1".	2nd	$\begin{bmatrix} 1 & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \end{bmatrix}$	Get zeros in the column of the "1".
$\mathbf{3rd} \begin{bmatrix} 1 & * & * \\ 0 & 1 & * \end{bmatrix}$	Get a "1" in the 2nd row, 2nd column.	3rd	$\begin{bmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & * & * & * \end{bmatrix}$	Get a "1" in the 2nd row, 2nd column.
$\mathbf{Last} \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \end{bmatrix}$	Get a "0" in the column of that "1".	4th	$\begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & * & * \end{bmatrix}$	Get zeros in the column of that "1".
Answer: $\{(a,b)\}$		5th	$\begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \end{bmatrix}$	Get a "1" in the 3rd row, 3rd column.
Note: These systems can be solved using a number of <u>different</u> approaches. However, most students are better off sticking to a single method, maybe this one.		Last	$\begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \end{bmatrix}$	Get zeros in the column of that "1".

Summary: Get the 1 first, and then use that 1 to help get your zeros. See <u>next page</u> for an explanation on how to do that.

Answer: $\{(a, b, c)\}$

Are you familiar with the tools in your toolbox?

- 1. Any two rows of the matrix can be interchanged (/switched/swapped).
- 2. Any row of the matrix can be multiplied by any (nonzero) number.
- 3. Any row of the matrix can be replaced by the sum of a (nonzero) multiple of another row added to a (nonzero) multiple of the row you're replacing.

*Getting Zeros: Multiply the row with the "1" in it by the opposite of the number where you want the zero; then add to that the row you are replacing. That's it!

Example: For
$$\begin{bmatrix} 1 & -3 & 8 \\ 2 & 5 & -6 \end{bmatrix}$$
, replace Row 2 with $(-2)\mathbf{R}_1 + \mathbf{R}_2$. You'll get $\begin{bmatrix} 1 & -3 & 8 \\ 0 & 11 & -22 \end{bmatrix}$.

*****Getting One's:

***In the first row**

- A. If there is a 1 in the first position of another row, just "swap" rows.
- B. Consider the multiples of the first elements of each row and find 2 that are different by 1. Then replace row 1 with that "sum".

Example: For
$$\begin{bmatrix} 3 & -2 & 5 \\ 7 & 1 & -2 \end{bmatrix}$$
, replace Row 1 with $\mathbf{R}_2 + (-2)\mathbf{R}_1$. You'll get $\begin{bmatrix} 1 & 5 & -12 \\ 7 & 1 & -2 \end{bmatrix}$. or for $\begin{bmatrix} 5 & -3 & 7 \\ 7 & 2 & -1 \end{bmatrix}$, replace Row 1 with $(-2)\mathbf{R}_2 + 3\mathbf{R}_1$. You'll get $\begin{bmatrix} 1 & -13 & 23 \\ 7 & 2 & -1 \end{bmatrix}$.

C. (My last resort)... Multiply row 1 by the reciprocal of the first element.

This will probably bring fractions into the matrix, then, have fun working with those fractions.

***In the bottom row**

This is pretty easy. Just multiply that bottom row by the reciprocal of the number where you want the 1.

*In the middle row (of a 3 equation, 3unknown system)

- A. If the 3rd row has a 1 in the 2nd column, just swap rows 2 and 3.
- B. Like step B (above), consider the multiples of the first elements of rows 2 and 3, and find a couple that are different by 1. Then replace row 2 with that "sum".

Example: For
$$\begin{bmatrix} 1 & -6 & 8 & 7 \\ 0 & 4 & -2 & 5 \\ 0 & 9 & 3 & -1 \end{bmatrix}$$
, replace row 2 with $\mathbf{R}_3 + (-2)\mathbf{R}_2$, to get $\begin{bmatrix} 1 & -6 & 8 & 7 \\ 0 & 1 & 7 & -11 \\ 0 & 9 & 3 & -1 \end{bmatrix}$.

C. Multiply row 2 by the reciprocal of the term where you want the 1. Again, this likely will bring fractions into the problem. I recommend using a standard elimination technique, get a zero in row 2, column 3, first.

Example: For
$$\begin{bmatrix} 1 & 3 & -2 & 4 \\ 0 & 4 & 3 & 14 \\ 0 & 8 & 7 & 26 \end{bmatrix}$$
, replace row 2 with $3\mathbf{R}_3 + (-7)\mathbf{R}_2$, to get

$$\begin{bmatrix} 1 & 3 & -2 & 4 \\ 0 & -4 & 0 & -20 \\ 0 & 8 & 7 & 26 \end{bmatrix}.$$

Then, multiply row 2 by the reciprocal of that 2nd element! Good luck!