DI FFERENTI ATI ON

Definition

For any function, $f(x), f^{\prime}(x)=\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
The function $f(x)$ is said to be differentiable if the limit exists.
Example: Find $f^{\prime}(x)$ when $f(x)=5 x^{2}-3 x$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{5(x+h)^{2}-3(x+h)-\left(5 x^{2}-3 x\right)}{h}=\lim _{h \rightarrow 0} \frac{5\left(x^{2}+2 x h+h^{2}\right)-3(x+h)-\left(5 x^{2}-3 x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 x^{2}+10 x h+5 h^{2}-3 x-3 h-5 x^{2}+3 x}{h}=\lim _{h \rightarrow 0} \frac{10 x h+5 h^{2}-3 h}{h}=\lim _{h \rightarrow 0} \frac{h(10 x+5 h-3)}{h}=\lim _{h \rightarrow 0}(10 x+5 h-3) \\
& =10 x-3
\end{aligned}
$$

Note: The derivative of a constant is zero. (To check this statement, use the definition!)

Differentiation Rules

Power Rule
For $f(x)=x^{n}$, where n is any rational number, $f^{\prime}(x)=\frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
Example: For $f(x)=x^{4}, f^{\prime}(x)=4 \cdot x^{4-1}=4 x^{3}$ or for $g(x)=\sqrt[3]{x}, g^{\prime}(x)=\frac{d}{d x} \sqrt[3]{x}=\frac{d}{d x} x^{\frac{1}{3}}=\frac{1}{3} x^{\frac{1}{3}-1}=\frac{1}{3} x^{-\frac{2}{3}}$

Constant Multiple Rule

For any constant c, and differentiable function $f(x), \frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d}{d x} f(x)=c \cdot f^{\prime}(x)$
Example: For $f(x)=x^{3}$, and $c=5, \frac{d}{d x}(c \cdot f(x))=\frac{d}{d x}\left(5 x^{3}\right)=5 \cdot \frac{d}{d x}\left(x^{3}\right)=5 \cdot 3 x^{2}=15 x^{2}$

Sum Rule

For any differentiable functions $f(x)$ and $g(x), \frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)=f^{\prime}(x)+g^{\prime}(x)$
Example: For $f(x)=2 x^{3}$ and $g(x)=4 x^{2}-5, \frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} 2 x^{3}+\frac{d}{d x}\left(4 x^{2}-5\right)=6 x^{2}+8 x$

Difference Rule

For any differentiable functions $f(x)$ and $g(x), \frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)=f^{\prime}(x)-g^{\prime}(x)$
Example: For $f(x)=\sqrt{x}$ and $g(x)=10 x^{3}, \quad \frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x} \sqrt{x}-\frac{d}{d x}\left(10 x^{3}\right)=\frac{1}{2} x^{\frac{-1}{2}}-30 x^{2}$

Product Rule

For any differentiable
functions $f(x)$ and $g(x)$,

$$
\frac{d}{d x}[f(x) \cdot g(x)]=f(x) \cdot \frac{d}{d x} g(x)+g(x) \cdot \frac{d}{d x} f(x)=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x)
$$

Example: For $f(x)=6 x+5$ and $g(x)=x^{3}-2, \quad \frac{d}{d x}[f(x) \cdot g(x)]=(6 x+5) \cdot \frac{d}{d x}\left(x^{3}-2\right)+\left[\frac{d}{d x}(6 x+5)\right] \cdot\left(x^{3}-2\right)$

$$
=(6 x+5)\left(3 x^{2}\right)+(6)\left(x^{3}-2\right)=24 x^{3}+15 x^{2}-12
$$

Quotient Rule

For any differentiable
functions $f(x)$ and $g(x)$

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \cdot \frac{d}{d x} f(x)-f(x) \cdot \frac{d}{d x} g(x)}{(g(x))^{2}}=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}}
$$

Example: For $f(x)=x^{2}+2$ and $g(x)=2 x-7 \quad \frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{d}{d x}\left[\frac{x^{2}+2}{2 x-7}\right]=\frac{(2 x-7) \frac{d}{d x}\left(x^{2}+2\right)-\left(x^{2}+2\right) \frac{d}{d x}(2 x-7)}{(2 x-7)^{2}}$

$$
=\frac{(2 x-7)(2 x)-\left(x^{2}+2\right)(2)}{(2 x-7)^{2}}=\frac{4 x^{2}-14 x-2 x^{2}-4}{(2 x-7)^{2}}=\frac{2 x^{2}-14 x-4}{(2 x-7)^{2}}
$$

Differentiation Rules - (continued)

Derivatives of the Trigonometric Functions

$$
\begin{array}{lll}
\frac{d}{d x}(\sin x)=\cos x & \frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\sec x)=\sec x \tan x \\
\frac{d}{d x}(\cos x)=-\sin x & \frac{d}{d x}(\cot x)=-\csc ^{2} x & \frac{d}{d x}(\csc x)=-\csc x \cot x
\end{array}
$$

The Chain Rule

If $y=f(u)$ is a differentiable function of u, and $u=g(x)$ is a differentiable function of x, then $y=f(g(x))$ is a differentiable function of x and

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \quad \text { or equivalently, } \quad \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

Restating this theorem using English: "To take the derivative of a composite function, take the derivative of the outside function and multiply this result by the derivative of the inside function."
The Chain Rule is an enormously importantly rule for taking derivatives since many functions themselves are composite functions. For example, something like $f(x)=(2 x-5)^{2}$ is considered to be composite with $f(u)=u^{2}$ and $u=g(x)=2 x-5$, as is something similar like $f(x)=\sqrt{2 x-5}$.
Yet another example: $f(x)=\left(\frac{2 x-3}{3 x-2}\right)^{4}$ is a composite function with $f(u)=u^{4}$ and $u=g(x)=\frac{2 x-3}{3 x-2}$.
Example 1 Find the derivative of $f(x)=3\left(4-x^{2}\right)^{5}$
Example 2 Find the derivative of $h(x)=\sin ^{3}(4 x)$

Note on Example 2 that the chain rule had to be used twice!

Implicit Differentiation

Until now on this handout, all of our functions have been written as equations with the dependent variable y or $\mathrm{f}(\mathrm{x})$ on the left hand side and with some expression containing the variable x on the right hand side. Equations such as these are said to be written in explicit form. Some equations containing x and y are not written this way. Consider the equation $x^{2}-2 y^{3}+4 y=2$. In this equation, we say that y is defined implicitly as a function of x. Note that it is very difficult to put this equation into explicit form, that is, to solve it for y in terms of x. Yet, we still may be interested in finding $\mathrm{dy} / \mathrm{dx}$. To find $\mathrm{dy} / \mathrm{dx}$ we take the derivative of each term (you may say, take the derivative of both sides), keeping in mind that the chain rule applies! This means that since y is some function of x , whenever we take the derivative of an expression containing y , we have to then multiply it by $\mathrm{dy} / \mathrm{dx}$. After that step, we solve the resulting equation for $\mathrm{dy} / \mathrm{dx}$.

Example 1 Find $d y / d x$ for $x^{3}+y^{3}=8$
$\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(y^{3}\right)=\frac{d}{d x}(8)$
Example 2 Find $d y / d x$ for $x^{3} y^{3}-y=x$
$3 x^{2}+3 y^{2} \frac{d y}{d x}=0$
(This time we will use y^{\prime} instead of $d y / d x$)
$\frac{d y}{d x}=\frac{-3 x^{2}}{3 y^{2}}=\frac{-x^{2}}{y^{2}}$

$$
3 x^{2} y^{3}+x^{3}\left(3 y^{2}\right) y^{\prime}-1 y^{\prime}=1 \quad \text { (Had to use the product rule) }
$$

$$
3 x^{3} y^{2} y^{\prime}-1 y^{\prime}=1-3 x^{2} y^{3} \longrightarrow \quad y^{\prime}=\frac{1-3 x^{2} y^{3}}{3 x^{3} y^{2}-1}
$$

$$
\begin{aligned}
& f^{\prime}(x)=3 \cdot \frac{d}{d x}\left(4-x^{2}\right)^{5} \quad \text { (constant multiple rule) } \\
& =3\left[5\left(4-x^{2}\right)^{4}\right] \cdot(-2 x) \quad \text { (power rule and chain rule) } \\
& =-30 x\left(4-x^{2}\right)^{4} \quad \text { (simplified) } \\
& \begin{aligned}
h^{\prime}(x) & =3 \cdot \sin ^{2} 4 x \cdot \frac{d}{d x}(\sin 4 x) \\
& =3 \cdot\left[2 \cdot \sin ^{1} 4 x \cdot \cos 4 x \cdot \frac{d}{d x}(4 x)\right] \\
& =6 \cdot \sin 4 x \cdot \cos 4 x \cdot(4) \\
& =24 \sin 4 x \cos 4 x
\end{aligned}
\end{aligned}
$$

